"TRADER" SERVICE SHEET | | CAPACITORS | Values | Loca
tions | |----------------------|--|--------------------|---------------------| | C1 | I.F. filter tuning | 68pF | H4 | | C2 · | Aerial coupling | $0.002 \mu F$ | A2 | | Č3 | M.W. aerial shunt | $0.001 \mu F$ | Aī | | Č4 | L.W. aerial shunt | $0.001 \mu F$ | A2 | | Ĉ5 | L.W. aerial trim | 56pF | A2 | | C6 | V1 C.G | 100pF | H3 | | Č7 | V1 S.G. decoup | $0.1 \mu F$ | H4 | | Č8 |) 1st I.F. trans. | 100pF | B2 | | C9 | | 100pr
100pr | B2 | | | tuning \ | | | | C10 | V1 osc. C.G | 68pF | H3 | | C11 | A.G.C. decoupling | 0·1μF | G4 | | C12 | S.W. osc. tracker | $0.0047 \mu F$ | G3 | | C13 | M.W. osc. tracker | 607 pF | G3 | | C14 | L.W. osc. tracker | 230pF | G3 | | C15 | L.W. osc. trimmer | 110 pF | G3 | | C16 | V2 S.G. decoup | $0.1\mu F$ | G4 | | C17 | V2 anode decoup | 0.1µF | G4 | | C18 |) 2nd I.F. trans. | 100pF | C2 | | C19 | V2 anode decoup
2nd I.F. trans. {
tuning { | 100pF | $\bar{\mathbf{C}}2$ | | \tilde{C} 20 | I.F. by-pass | 82pF | F4 | | $\tilde{\text{C21}}$ | P.U. coupling | $0.05 \mu \hat{F}$ | $\hat{G}^{\hat{A}}$ | | C22 | | 470pF | Ďî | | C23 | Parts tone control | $0.002\mu F$ | Di | | C24 | Neg. feed-back | 4.7pF | F4 | | C25 | A.F. coupling | $0.01 \mu F$ | F4 | | C26 | A.G.C. coupling | 15pF | F4 | | C27 | | 0.001µF | F4 | | | I.F. by-pass | | | | C28 | A.F. coupling | $0.002 \mu F$ | F4 | | C29 | Gram tone corrector | 0.003μ F | F4 | | C30* | H.T. smoothing | $8\mu F$ | E4 | | C31 | Part tone corrector | $0.02 \mu F$ | F3 | | C32* | H.T. smoothing | $50 \mu F$ | C1 | | C33* | | $50\mu F$ | C1 | | C34* | G.B. by-pass | $50 \mu F$ | E4 | | C35 t | S.W. aerial trim | - | A2 | | C3 61 | M.W. aerial trim | - | A1 | | C 371 | L.W. aerial trim | | A2 | | C38+ | Aerial tuning | | B1 | | C391 | S.W. osc. trim | | H4 | | C40f | M.W. osc. trim | | G 4 | | C411 | L.W. osc. trim | | G4 | | C 42† | Oscillator tuning | | Bi | | U 444T | Oscillator running | | וטו | # EKCO A160 3-Band A.C. Superhet ## CIRCUIT DESCRIPTION A ERIAL input via coupling coils L2, L3 and L4 to single-tuned circuits, which precede triode hexode valve (V1, Mullard UCH42) operating as frequency changer with internal coupling. I.F. rejection by L1, C1. Second valve (V2, Mullard UF41) is a variable-mu R.F. pentode operating as intermediate frequency amplifier with tuned transformer couplings C8, L14, L15, C9 and C18, L16, L17, C19. Intermediate Frequency 460 k/os. Diode signal detector is part of double diode triode valve (V3, Mullard UBC41). Audio frequency component in its rectified output is developed across diode load resistor R11, and | | RESISTORS | Values | Loca-
tions | |------------|--|-----------------------------------|------------------| | R1
R2 | Aerial shunt
V1 C.G | 1MΩ
680kΩ | H4
H4 | | R3
R4 | V1 C.G V1 screen grid { potential divider } | 18kΩ | H4 | | R5 | osc. C.G. stopper | $27 \mathrm{k}\Omega$ 220Ω | H4 | | R6 | V1 osc. C.G. | 47kΩ | H4 | | R7 | 3 | 22kΩ | H4 | | R8 | Cosc. anode feeds | $68k\Omega$ | \mathbf{H}_{4} | | R9 | V2 S.G. feed | $47 \mathrm{k}\Omega$ | F4 | | R10 | V2 anode decoup | $2\cdot 2k\Omega$ | F4 | | R11 | Signal diode load | $680 \mathrm{k}\Omega$ | F4 | | R12 | I.F. stopper | $47 \mathrm{k}\Omega$ | F4 | | R13 | Tone control | $1M\Omega$ | D1 | | R14 | Part tone control | 220kΩ | D1 | | R15
R16 | Volume control
V3 C.G | 1MΩ
10MΩ | E3
F4 | | R17 | V3 C.G
V3 anode load | 220kQ | F4 | | R18 | A.G.C. decoupling | 1MO | F4 | | R19 | A.G.C. diode load | 1MΩ | F4 | | R20 | V4 C.G | 680kΩ | F3 | | R21 | H.T. smoothing | $10 \text{k}\Omega$ | F4 | | R22 | Part tone corrector | $4.7M\Omega$ | F3 | | R23 | Nog food book | 220Ω | F4 | | R24 | $\left. \left. \right. \right\}$ Neg. feed-back $\left. \dots \right\{ \left. \right. \right $ | 10Ω | E4 | | R25 | Part tone corrector | 3.3 k Ω | E3 | | R26 | H.T. smoothing | 680Ω | F3 | | R27 | G.B. potential | 33Ω | E3 | | R28* | divider \ | 84Ω | E3 | | R29 | V5 surge limiter | 100Ω | E4 | * Two resistors, 190Ω and 150Ω , in parallel. is passed via volume control R15 and C25 to grid of triode section. Resistance-capacitance coupling by R17, C28 and R20 between V3 and pentode output valve (V4, Mullard UL41). Provision is made for the connection of a iow impedance external speaker across T1 secondary winding. (Continued col. 1 overleaf) | отн | ER COMPONENTS | Approx.
Values
(ohms) | Loca-
tions | |--|---|---|--| | L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L15
L15
L16
L113
L14
L15
L15
L113
L14
L17
L113
L14
L17
L19
L19
L19
L19
L19
L19
L19
L19
L19
L19 | I.F. filter coil Aerial coupling coils Aerial tuning coils Oscillator reaction coils Oscillator tuning coils 1st I.F. trans. { Pri. Sec. Pri. Sec. Speech coil | 15
-6.5
15.0
-3.0
23.0
-0.8
3.0
-2.3
7.5
12.0
12.0
12.0
12.0
2.5 | H4 A2 A1 A2 A2 A2 A1 A2 A3 B3 B3 B3 B3 B2 B2 C2 C2 | | T1
T2 | O.P. trans. {b Mains {a trans. {c, total} | 40·0
40·0
85·0
40·0 | D2 | | \$1-S12
\$13
\$14 | Waveband switches
Speaker switch
Mains sw., g'd R15 | = . | H3
G4
E3 | EKCO 1137 A160 Circuit Description-continued. Variable tone control by C22, R13, C23 and R14 in V3 grid circuit. Fixed tone correction by C31, R25 in V4 anode circuit and negative feed-back capacitor C29 in V3 anode circuit. A proportion of the speech coil voltage, that developed across R24 in potential divider R23, R24, is fed to V3 cathode circuit giving a further degree of negative feed-back. #### **GENERAL NOTES** Switches.—S1-S12 are the waveband switches, ganged in two rotary units beneath the chassis. These units are indicated in our under chassis illustration and shown in detail below col. 3 where they are drawn as seen from the con- | Switch | s.w. | M.W. | L.W. | Gram | |---|------|-------|--------------|------| | S1 | С | | | _ | | \$1
\$2
\$3
\$4
\$5
\$6
\$7
\$8
\$9 | 1 — | 0
 | c | | | S3 | _ | i — | C | C | | S4 | | | | С | | S5 | c | | _ | | | S6 | | С | C | | | 87 | | | C | | | S8 | C | | | ! | | S9 | | C | | _ | | S10 | | | c | | | Š11 | _ | | | CC | | S12 | | _ | - | С | trol knob end of an inverted chassis. In the associated switch table above, a dash indicates open and $\bf C$ closed. Modification.—In earlier receivers the valves were biased individually by means of cathode bias resistors as follows: $\bf V1$ cathode was returned to chassis via a 330 Ω resistor shunted with an $0.1\,\mu{\rm F}$ capacitor; $\bf V4$ cathode was returned to chassis via a 150 Ω resistor shunted with a 50 $\mu{\rm F}$ electrolytic capacitor; $\bf R27$, $\bf R28$ and $\bf C34$ were not fitted, and the top end of winding a on $\bf T2$ was returned to chassis together with the low potential end of the heater chain. heater chain. heater chain. Drive Cord Replacement.—About 24 inches of fine-gauge Bowden cable and 34 inches of high-grade flax fishing line, plaited and waxed, are required for a new drive cord. Soldered end loops should be made on the Bowden cable so that it measures 21½ inches overall. One end of the length of drive cord should be tied to one of these soldered loops, and the complete drive then run as shown in the sketch beneath the plan view on this page. ### **VALVE ANALYSIS** Valve voltages and currents in the table (next col.) are those measured in our receiver when it was operating from A.C. mains of 235 V, the voltage adjustment being set to the 240-250 V tapping. The receiver was switched to M.W. and the gang turned to maximum capacitance, but there was no signal input. Voltages were measured on an Avo Electronic TestMeter, and as this instrument has a Supplement to Wireless & Electrical Trader, 20 March 1954 Plan view of Above: chassis. The tuning scale must be detached and placed over the scale backing plate for alignment. Left: Sketch of the drive cord system with gang at maximum. high internal resistance, allowance should be made for the current drawn by other types of meter. Chassis was the negative connection in every case. The negative voltage measured across R27 was 1.8 V, and across C34, 10 V. | 37.1 | Anode | | Screen | | Cath. | |---------|---|---|--------|-----|-------| | Valve | v | mA | v | mA | V | | V1UCH42 | $\begin{cases} 174 \\ \text{Oscil} \\ 62 \end{cases}$ | $\left\{\begin{array}{c} 2\cdot 9 \\ \text{llator} \\ 1\cdot 7 \end{array}\right\}$ | 88 | 2.4 | | | V2UF41 | 162 | 5.5 | 88 | 1.7 | | | V3UBC41 | 62 | 0.23 | | — | | | V4UL41 | 160 | 34.0 | 110 | 6.0 | - | | V5UY41 | 200* | | | | 206† | * A.C. reading. † Cathode current, 55mA ## CIRCUIT ALIGNMENT 1.F. Stages.—Switch receiver to M.W. and turn gang to maximum capacitance. Connect output of signal generator, via an 0.1 µF capacitor in each lead, to control grid (pin 6) of V1 and chassis. Feed in a 460kc/s (652.1 m) signal and adjust the cores of L17 (location reference C2), L16 (F4), L15 (B2) and L14 (G4) for maximum output. R.F. and Oscillator Stages.—Check that with the gang at maximum capacitance, the cursor coincides with the vertical lines at the high wavelength ends of the S.W. and L.W. tuning scales. Transfer signal generator to A and E. I.F. Filter.—Feed in a 460 kc/s signal and adjust the core of L1 for minimum output. S.W.—Switch receiver to S.W., tune to 16.67 m, feed in a 16.67 m (18 Me/s) signal and adjust C39 (H4) and C35 (A2) for maximum output. Tune receiver to 33.34 m, feed in a 33.34 m (9 Mc/s) signal and adjust cores of L11 (H3) and L5 (A2) for maximum output. M.W.—Switch receiver to M.W., tune to and L5 (A2) for maximum output. M.W.—Switch receiver to M.W., tune to 214.3 m, feed in a 214.3 m (1,400 kc/s) signal and adjust C40 (G4) and C36 (A1) for maximum output. Tune receiver to 333.4 m, feed in a 333.4 m (800 kc/s) signal and adjust the cores of L12 (G8) and L6 (A1) for maximum output. L.W.—Switch receiver to L.W., tune to 1,000 m, feed in a 1,000 m (300 kc/s) signal and adjust C41 (G4) and C37 (A2) for maximum output. Tune receiver to 1,429 m, feed in a 1,429 m (210 kc/s) signal and adjust the cores of L13 (G3) and L7 (A2) for maximum output. Waveband Above: switches. Left: Underside view of chassis. Printed in England by Cornwall Press Ltd., Paris Garden, London, S.E.1.